首页> 外文OA文献 >When are static and adjustable robust optimization with constraint-wise uncertainty equivalent?
【2h】

When are static and adjustable robust optimization with constraint-wise uncertainty equivalent?

机译:什么时候具有约束约束不确定性的静态和可调鲁棒优化等效?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adjustable Robust Optimization (ARO) yields, in general, better worst-case solutions than static Robust Optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we derive conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that if the uncertainty is constraint-wise and the adjustable variables lie in a compact set, then under one of the following sets of conditions robust solutions are optimal for the corresponding (ARO) problem: (i) the problem is fixed recourse and the uncertainty set is compact, (ii) the problem is convex with respect to the adjustable variables and concave with respect to the parameters defining constraint-wise uncertainty. Furthermore, if we have both constraint-wise and nonconstraint-wise uncertainty, under similar sets of assumptions we prove that there is an optimal decision rule for the Adjustable Robust Optimization problem that does not depend on the parameters defining constraint-wise uncertainty. Also, we show that for a class of problems, using affine decision rules that depend on both types of uncertain parameters yields the same optimal value as ones depending solely on the nonconstraint-wise uncertain parameter. Additionally, we provide several examples not only to illustrate our results, but also to show that the assumptions are crucial and omitting one of them can make the optimal worst-case objective values different.
机译:通常,可调整的稳健优化(ARO)比静态稳健优化(RO)产生更好的最坏情况解决方案。但是,ARO在计算上比RO困难。在本文中,我们得出了ARO和RO问题的最坏情况目标值相等的条件。我们证明,如果不确定性是约束方式的,并且可调整变量位于紧凑集中,则在以下条件之一下,鲁棒解对于相应的(ARO)问题是最佳的:(i)问题是固定的追索权,不确定性集是紧凑的;(ii)对于可调变量而言凸出问题,对于定义约束方式不确定性的参数而言,问题是凹入的。此外,如果我们同时具有约束方式和非约束方式的不确定性,则在类似的假设集合下,我们证明存在针对可调鲁棒优化问题的最佳决策规则,该最优决策规则不依赖于定义约束方式的不确定性的参数。同样,我们表明对于一类问题,使用依赖于两种类型的不确定参数的仿射决策规则所产生的最优值与仅依赖于非约束性不确定参数的最优值相同。此外,我们提供了几个示例,不仅说明了我们的结果,而且还表明了这些假设至关重要,而忽略其中的一个假设可能会使最佳的最坏情况目标值有所不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号